一些消费类应用要求单锂离子电池(如手机),或者需要三节串联和两节并联电池(如笔记本电脑)。这就引发了对更高功率、更高容量以及更加稳健电池组的需求。串联安装电池可以提高电压,而并联安装的电池则可以增加容量。这些电池组数量不一,从笔记本电脑使用的六节电池到电动汽车中使用的数百节电池,这给电池设计人员带来许多新的设计困难。
这些大容量电池需要先进的管理来确保获得高品质的设计。我们必须考虑合适的温度、电压和电流测量。随着锂离子电池组越来越大型,要求更多地关注散热管理、电池组可靠性、电池使用寿命和电池平衡。实际上,随着电池组中所需电池数量的增加,电池单元之间的温度、容量和串联阻抗差异成为一个重要问题。本文将主要讨论这些差异带来的影响,以及如何在电池设计中控制这些差异。
问题:电池状态不匹配
电池的作用是为其主机存储和提供能量。我们想尽可能多地向(从)电池组存储和获取能量。妨碍多节电池组完成这一工作的主要方面是电池阻抗。让我们来看一看其是如何影响向电池主机供电的。
在锂离子电池组中,存在一些允许每节串联电池达到的预定义电压最小值和最大值。这是一种由电池组中IC控制的安全特性,请参见图1A。只要每一节电池均保持在过压和欠压断开范围之间,则该电池组便能够放电和充电。如果一节电池达到上述任何一个阈值,则整个电池组便会关闭(欠压),从而让主机本应可用的电池组处于无法充电状态(请参见图1B)。另外,它不允许充电器向电池组充入应有的大量能量(请参见图1C)(过压)。
电池不平衡的原因有很多:
* 非均匀热应力
* 阻抗变量
* 低电池容量匹配
* 化学差别
这些原因中的有一些可以通过电池选择和较好的电池组设计来得到最小化。即便如此,所有前期设计工作中,电池不平衡的主要原因是非均匀热应力。电池与电池之间的温度差异可引起阻抗变量和化学反应的变化。这就形成了温度差异,而电池暴露在这种差异下的时间较长。这是一幅笔记本电脑FLIR图,其表明温度差异的程度,即便在消费类电子应用中也是如此。温度每升高10℃,一节锂离子电池的自放电率便翻一番。锂离子电池的一个特点是,内部阻抗是温度的函数。较低温度的电池表现出高阻抗,因此在充电或放电期间IR压降更大。这种电阻还随暴露在高充电状态和高温下持续时间的增加以及充电周期时间的延长而增大。
解决方案:电池平衡技术
由于对能量供给的影响,以及串联电池应用中存在锂离子电池过充电的危险性,必须使用电池平衡技术来对失衡进行校正。共有两类电池平衡技术:无源电池平衡技术和有源电池平衡技术。
无源电池平衡技术
被称为“电阻泄漏”平衡的无源电池平衡方法使用一条简单的电池放电路径,在所有电池电压相等以前一直为高压电池放电。除其他电池管理功能以外,许多器件都具有电池平衡功能。
诸如bq77PL900等锂离子电池组保护器主要用于许多无绳电池供电设备、助力自行车和轻便摩托车、不间断电源以及医疗设备。其电路主要起到一个独立电池保护系统的作用,使用5~10节串联电池。除通过I2C端口控制的许多电池管理功能以外,还可将电池电压同可编程阈值对比以便决定是否需要进行电池平衡。如果任何特定电池达到该阈值,则充电停止,并激活一条内部旁路。当高压电池降至恢复极限值时,电池平衡停止,而继续充电。
电池平衡算法只使用电压发散作为平衡标准,具有过平衡(或欠平衡)的缺点,这是由于存在阻抗失衡影响。问题是,电池阻抗还会在充电期间引起电压差异(VDiff_Start和VDiff_End)。简单的电压电池平衡并未区分是电量失衡还是阻抗失衡。因此,这种平衡不能保证完全充电后所有电池均获得100%的电量。